LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2013
MT 1100 - MATHEMATICS FOR PHYSICS
\square

Part A

Answer all Questions:

1. What is Leibnitz's theorem.
2. Find the polar subtangent and polar subnormal for the curve $r=e^{\theta c o t a}$.
3. Prove that $L\left(t^{n}\right)=\frac{\Gamma(n+1)}{s^{n+1}}$.
4. Find the value of $L^{-1}\left[\frac{1}{(s+a)^{2}}\right]$.
5. Prove that $a^{x}=1+\frac{x \log a}{1!}+\frac{x^{2}}{2!}(\log a)^{2}+\ldots$
6. Define rank of the matrix.
7. Write down the expansion for $\cos 5 \theta$.
8. If $\sin ^{2} \theta+\cos ^{2} \theta=1$, Show that $\cos h^{2} x-\sinh ^{2} x=1$.
9. What is the chance of that the leap year selected at random will contain 53 Sundays?
10. Define Normal distribution.

Part B

Answer any FIVE questions:

11. Sum the series $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8.12}+\ldots$
12. Find $L\left(t e^{-t} \sin t\right)$.
13. Verify Cayley - Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right)$
14. Find the slope of the tangent with initial line for the cardioids $r=a(1-\cos \theta)$ at $\theta=\frac{\pi}{6}$.
15. A coin is tossed three times. Find the chances of throwing, (i) three heads (ii) two heads and one tail, (iii) head and tail alternately.
16. If $\sin (A+i B)=x+i y$, Prove that $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$ and $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$.
17. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
18. Expand $\sin ^{4} \theta \cos ^{2} \theta$ in a series of cosines of multiples of θ.

Part C

Answer any TWO questions:

$(2 \times 20=40)$
19. (a)Prove that $1.5+\frac{2.6}{1!}+\frac{3.7}{2!}+\ldots \infty=13 e$.
(b) Find the eigen values eigen vectors of the matrix $\left(\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right)$.
20. (a) Solve the equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=\sin t$ given that $y=\frac{d y}{d x}=0$ when $\mathrm{t}=0$.
(b) Find the value of $L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$.
21. (a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$ then prove that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
(b) Find the Maxima and minima of $f(x)=2 x^{3}-3 x^{2}-36 x+10$.
22. (a) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members:

Age in years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Number of members	3	61	132	153	140	51	2

(b) Given the following table:

\mathbf{X}	-3	-2	-1	$\mathbf{0}$	$\mathbf{1}$	2	$\mathbf{3}$
$\mathbf{P (x)}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 0}$

Compute (i) $\mathrm{E}(\mathrm{x})$ (ii) $\mathrm{E}(2 \mathrm{x}+3)$ (iii) $\mathrm{E}(4 \mathrm{x}+5)$ (iv) $\mathrm{E}\left(\mathrm{x}^{2}\right)$ (v) $\mathrm{E}(2 \mathrm{x}-3)$.

